LogoLogo
ISTVSConferences
  • 21st International and 12th Asia-Pacific Regional Conference of the ISTVS
  • PROGRAM
    • Overview
    • Authors
    • Live program
  • Conference
    • Registration
    • Keynote
    • Awards
      • St Christoper Lecture
      • Bekker-Reece-Radforth Award
    • Call for Papers
      • CFP Poster
    • Sponsors
    • Technical Tour
    • Location and Travel
    • Committee
    • Contact
  • Submissions
    • Papers
      • 0356 / Hammering Energy Requirements For Surveying Lunar Surface With Dynamic Cone Penetrometers And Seismic Methods.
      • 0412 / Evaluation Of Grouser Wheel Traction Performance At High-Speed By Single-Wheel Test
      • 0906 / Experimental Investigation Of Increased Bearing Capacity When Imparting Vibration To Loose Ground In Low Atmospheric Pressure
      • 1204 / Measurement And Visualization Of Soil Cutting And Throwing Behavior By A Rotary Tillage Blade
      • 1241 / Study On Classification Of Excavated Soil Using Internal Sensor Data Of Hydraulic Excavator
      • 1525 / Photogrammetry Based Mobility Mapping For Small Scale Model Vehicle
      • 1649 / Dynamic Mode Decomposition For Piv-Based Sand Flow Field Beneath Traveling Wheel
      • 1710 / A Novel Measurement Method To Aid Development Of Soft Soil Tyre-Terrain Interaction Models
      • 1882 / Spatio-Temporal Analysis Of Sand-Density Distribution Beneath Traveling Wheel Based On Particle Image Velocimetry
      • 1902 / The Combination Of Exhaust Gas Recirculation And Water Injection In A Modern Diesel Engine
      • 1928 / A Novel Soil Stress Estimation Method Of Wheel-Soil Interaction Using Photoelasticity
      • 2369 / Experimental Verification Of Particle Behavior During Crushing And Mixing Of Deteriorated Asphalt Pavement Layers By Stabilizer
      • 2411 / Proposing Turning Motion Of The Small And Lightweight Push-Rolling Rover With Mimimal Configuration
      • 2651 / Rapid Assessment Tools For Estimating Trafficability On Low-Volume Roads
      • 2812 / An Interaction-Aware Two-Level Robotic Planning And Control System For Vegetation Override
      • 2919 / Accurate Rover Mobility Analysis Using Hils-Drft With Real-Time Parameter Tuning Approach
      • 3181 / Assessing Sensitivities Of Off-Road Pneumatic Tire On Clay: A Finite Element Investigation On Tire Operational And Design Parameters
      • 3303 / Soil Instrumentation For Measuring Normal Stress Distribution Under Off-Road Tire
      • 3649 / Modeling The Resistive Forces On Vehicles In Deep Snow
      • 3769 / Mobility During The Transition Seasons In The Arctic
      • 3773 / Evaluation Of The Multi-Pass Effect Of An Exploration Rover By Single Wheel Testing Assuming Lunar Gravity And Soil
      • 4093 / The Role Of Tire-Soil Interface Characteristics On Performance Parameters Through Experimental And Numerical Investigation
      • 4142 / Root System Analysis After Vibratory Roller Compaction In Dry Direct Seeding Of Rice Field
      • 4213 / Dem-Based Analysis And Optimization Of An Excavation Bucket Drum For In-Situ Resource Utilization
      • 4476 / Spectral Determination Of Soil Moisture Content Based On The Dry Colour Of The Soil
      • 4715 / Uav-Based Three-Dimensional Rough Terrain Modelling
      • 4859 / Trafficability Conditions For Military Wheeled Trucks On Cultivated Fields
      • 4927 / Tip Angle Dependence For Resistive Force Into Dry Granular Materials At Shallow Cone Penetration
      • 4966 / Real-Time Implementation Of Non-Linear Controllers And Predictors For Off-Road Vehicle Dynamics On Embedded Systems
      • 5295 / Model-Based Online Optimal Control For Vehicles In Reduced Gravity.
      • 5334 / Enhanced Open-Loop Control Of Automatic Gear Shifting In Hydromechanical Cvt For Agricultural Tractors
      • 5620 / Step-Climbing Motion Acquisition Of Tracked Robot With Flippers Without Using Environment Information By Reinforcement Learning
      • 5720 / Suppress Slip While Crossing Loose Slopes Using Reverse Rotation Behavior Of Rovers With Function Of Independent Contraction/Expansion Mechanism
      • 6086 / Traveling Analysis Of Wheel For Lunar Exploration Rover Based On Extended Terramechanics Model: Examination Of Similarity Law Of Gravity
      • 6325 / Proposal Of A New Manual For Telescopic Penetrometer
      • 6412 / Traversing Abilities Simulation Of A Biomimetic Robot On Granular Soil Terrain
      • 6422 / Sinkage Study In Granular Material For Space Exploration Legged Robot Gripper
      • 6476 / Improved Trafficability Over Soft Soils Using Ground Matting
      • 7322 / Lateral Tyre Characterization: Rolling Tyre Vs Static Tyre Testing
      • 7453 / The Impact Of Changes In The River Regime On The Mobility Of Off-Road Vehicles
      • 7603 / Evaluation Of Off-Road Uninhabited Ground Vehicle Mobility Using Discrete Element Method And Scalability Investigation
      • 7829 / Development Of Foot In Balloon Biped Robot Using Buoyancy Force For Traveling Soft Ground
      • 8084 / Log Detection For Autonomous Forwarding Using Auto-Annotated Data From A Real-Time Virtual Environment
      • 8590 / Modeling Of Terrain Deformation By A Grouser Wheel For Lunar Rover Simulator
      • 8774 / Proposal Of Hybrid Locomotion Lunar Rover With Crawling Mechanism
      • 8812 / Energy Method To Compare Performance Of New Types Of Sugar Cane Transport Equipment
      • 9028 / Uncertainty Quantification For Wheeled Locomotion Machine Learning Predictions On Soft Soil
      • 9295 / Granular Scaling Laws For Accurate Prediction Of Wheel Mobility On Slopes In Low-Gravity Environments
      • 9663 / Year-Round Measurements Of The Soil Cone Index On Grass Airfields For Ground Performance Of Airplane
      • 9747 / Application Of A Rockie Bogie Suspension For A New Type Of Sugar Cane Transport System
    • Abstract-only
  • PHOTOS
  • POLICIES
    • Terms and conditions
    • Privacy policy
    • Notation based on the Specified Commercial Transactions Law
  • Society
    • ISTVS
    • Journal of Terramechanics
Powered by GitBook
On this page
  • Authors
  • Abstract
  1. Submissions
  2. Papers

4476 / Spectral Determination Of Soil Moisture Content Based On The Dry Colour Of The Soil

Previous4213 / Dem-Based Analysis And Optimization Of An Excavation Bucket Drum For In-Situ Resource UtilizationNext4715 / Uav-Based Three-Dimensional Rough Terrain Modelling

Last updated 5 months ago

Authors

György Pillinger, Ahmed Elawad Eltayeb Ahmed, and Peter Kiss

Paper presented at ISTVS 2024 | 21st International and 12th Asia-Pacific Regional Conference of the ISTVS Keywords: spectroscopy; porosity; soil compaction; particle density; moisture content; spectral signature; sandy soil; soil color; reflectance; saturation

Abstract

During our previous tests, we determined the change in colour due to moisture content in the case of sandy soil of three colours that can be easily distinguished with the naked eye. To characterize the colour, we used the average of the 600 and 700 nm range of the reflectance curve, because in this range the curves are more linear and the points are better separated, i.e. their resolution is better. Also, this wavelength range corresponds to yellow and red colours, which are better absorbed by water molecules, compared to the 400-600 nm range, which includes violet, blue, green and yellow colours. We found that the parameters characteristic of the colour of the examined sandy soils react more sensitively to the influence of soil moisture up to a moisture content of ~4-5%. The created function used the coordinates of this breaking point to determine the moisture content based on reflectance. In our current article, we continue the further processing of the measurement results, as well as carry out new measurements to clarify the functional relationships. We examine the effect of soil porosity and grain density on the reflectance value. This means that in the future, reflectance is given as a function of saturation. The results predict that reflectance is more highly correlated with saturation than with moisture content alone. Another goal is to determine the effect of the initial colour of the sandy soil on the moisture content. As a reference point, we use a characteristic of the reflectance curve for 0% moisture content. We are looking for an answer, how the water content of wet soil can be determined based on the data of dry soil and the reflectance of wet soil.


Full paper purchase: ISTVS members receive three complimentary papers per year:

https://doi.org/10.56884/GV41C6MW
https://www.istvs.org/proceedings-orders/paper
https://www.istvs.org/members